I Dare!

sunday_assembly_3(Click photos* for larger view)

Yes. I dare to show equations during public lectures. There’ll be equations in my book too. If we do not show the tools we use, how can we give a complete picture of how science works? If we keep hiding the mathematics, won’t people be even more afraid of this terrifying horror we are “protecting” them from?

I started my Sunday Assembly talk reflecting upon the fact that next year will make 100 years after Einstein published one of the most beautiful and far-reaching scientific works in history, General Relativity, describing how gravity works. In the first 30 seconds of the talk, I put up the equations. Just because they deserve to be seen, and to drive home the point that its not just a bunch of words, but an actual method of computation, that allows you to do quantitative science about the largest physical object we know of – the entire universe!

sunday_assembly_1

It was a great audience, who seemed to enjoy the 20 minute talk as part of […] Click to continue reading this post

Sunday Assembly – Origin Stories

Sorry about the slow posting this week. It has been rather a busy time the last several days, with all sorts of deadlines and other things taking up lots of time. This includes things like being part of a shooting of a new TV show, writing and giving a midterm to my graduate electromagnetism class, preparing a bunch of documents for my own once-every-3-years evaluation (almost forgot to do that one until the last day!), and so on and so forth.

Well, the other thing I forgot to do is announce that I’ll be doing the local Sunday Assembly sermon (for want of a better word) this coming Sunday. I’ve just taken a step aside from writing it to tell you about it. You’ll have maybe heard of Sunday Assembly since it has been featured a lot in the news as a secular alternative (or supplement) to a Sunday Church gathering, in many cities around the world (more here). Instead of a sermon they have someone come along and talk about a topic, and they cover a lot of interesting topics. They sound like a great bunch of people to hang out with, and I strongly [..] Click to continue reading this post

Dusting off Last Spring’s Excitement

There has been quite a bit of discussion of the realisation that the exciting announcement made by the BICEP2 experiment back in March (see my post here) was based on erroneous analysis. (In brief, various people began to realise that most, if not all, of what they observed could be explained in terms of something more mundane than quantum spacetime fluctuations in the ultra-early universe – the subtle effects of galactic dust. A recent announcement by another experiment, the Planck team, have quantified that a lot.)

While there has been a bit of press coverage of the more sober realisations (see a nice June post on NPR’s blog here), it is (as with previous such cases) nowhere near as high profile as the initial media blitz of March, for better or worse. I think that “worse” might be the case here, since it is important to communicate to the public (in a healthy way) that science is an ongoing process of discovery, verification, and checking and re-checking by various independent teams and individuals. It is a collective effort, with many voices and the decentralised ever-sceptical scientific process itself, however long it takes, ultimately building and broadening the knowledge base. This self-checking by the community, this reliance on independent confirmation of […] Click to continue reading this post

Dark Energy Discussion

dark_energy_discussionI was sent an interesting link a while ago* that I thought I would share with you. It is a really good discussion about Dark Energy – what do we think it is, why we think it exists, why some think it does not, and how to move forward with the discussion of what is, after all apparently *most* of our universe. It is a panel discussion that was hosted by the Institute for Arts and Ideas (which I *love* the idea of!). The discussion is described on the site as follows:

Dark energy is supposed to make up two-thirds of the universe. But troublingly CERN has yet to find any evidence. Have we got our story of the universe wrong – might dark energy be the aether of our time? Do we need a new account of the universe, or is it too soon for such radical solutions?

The Panel
The BBC’s Sue Nelson asks Templeton Prize winning cosmologist George Ellis, Cambridge physicist David Tong and mathematician Peter Cameron to seek the invisible.

Ok, the “troublingly CERN has yet to find any evidence” part puzzles me a bit, since nobody’s really expecting CERN to find any evidence of it, in any large scale experiments that I’m aware of (please correct me if I am wrong)… Is the writer of the abstract confusing Dark Energy and Dark Matter? Even then I think it is an odd phrase to lead with, especially if you don’t mention the huge amount of evidence from astronomy in the same footing… but I imagine the abstract was maybe not written by a physicist?

Nevertheless, I strongly recommend it as a thought-provoking discussion, and you can find it embedded below. Do also check out their many other interesting […] Click to continue reading this post

It’s Dynamical Cosmological Constant Day!

airline_sketch_28_06_2014As you may know from three previous recent posts on research (here, here, and here), I’ve been thinking and calculating a lot in the area of dynamical cosmological constant – concerning mostly (but not entirely) thermodynamics and quantum gravity. Specifically, the cosmological constant becomes the pressure variable in the thermodynamics. I think it is important, and will teach us something about things like gauge/gravity duality, string theory, black holes, and perhaps even cosmology, but I am not sure what yet. I’ve made some suggestions in recent papers, and computed some interesting things along the way.

Anyway, the larger community has not been following this story much, since: (1) It means a break with some powerful and still very fruitful frameworks where the cosmological constant being fixed is a given – like AdS/CFT – and it is not clear what that means yet, so the motivation is not super-strong; and (2) Let’s be honest, there’s no superstar working on it, so it is not going to get anyone any points. So I’ve been trying to shout about it in my little way from the periphery, as I think it might be useful, and since several people have been doing really good and interesting work on this issue for many years and it is worth more people seeing what they’ve been up to.

So imagine my pleasant surprise when I looked on the listing of new papers on the arXiv for today and saw three (!) papers on the subject, moving things forward in various ways. (They all seem to have noticed some of what I’ve […] Click to continue reading this post

News From the Front XII: The Nuts and Bolts of Enthalpy in Quantum Gravity

So it happened again. I got musing to myself about something and decided to do a quick computation to check it out, and it took me down an interesting rabbit hole, which resulted in me writing a nice little paper at the end of last week that appeared today on the arxiv. I think the physics is really really nice. Let me tell you a bit about it. It is in the same area of ideas that I mentioned last time, concerning that paper I wrote last month. So let me pick up the story there, since I did not really touch on the core of the story. [Note: for non-experts, the following will get somewhat technical and full of terms and ideas that I will not explain. Sorry.]

One of the things that might have struck you (if you’re an expert in the area) from my proposal to make heat engines out of black holes that do real mechanical work like the engines you read about in physics textbooks is that there ought to be no actual mechanical work since there’s no pistons – no pistons changing volumes and so forth. That is (or rather, was) a missing ingredient in the standard thermodynamics of black holes in quantum gravity. Well, that all changed a short few years ago with the work of a number of authors, particularly with the clear suggestion of David Kastor, Sourya Ray, and Jennie Traschen, and work by Brian Dolan, with a fair bit of followup investigations by various other authors including some I’ll mention below. (Update: Two reviews, with different foci, can be found in here and here.) The general idea is that if you allow the cosmological constant [tex]\Lambda[/tex] to be a thermodynamical variable as well (and there is a long history of authors considering this in various contexts), where it naturally acts like a pressure [tex]p = -\Lambda/8\pi G[/tex], (G is Newton’s constant, and I’m setting various other constants to unity in the usual way) then you naturally include a conjugate to that variable that should be the pressure.

For a simple static black hole like Schwarzschild, the volume turns out to the the naive volume you get by taking the radius of the black hole and forming […] Click to continue reading this post

News From the Front, XI: Holographic Heat Engines!

Yes, you heard me right. Holographic Heat Engines. I was thinking recently about black holes in universes with a cosmological constant and their thermodynamics. I had an idea, it led to another, then another, then some calculations, and then a couple of days of writing, calculating, and thinking… then a day to cool off and think about other things. Then I came back to it, decided it was still exciting as an idea and so tidied it all up as a paper, made some diagrams, tidied some more, and voila! A paper submitted to the arxiv.

I’m sort of pleased with all of it since it allowed me to combine a subject I think is really fun (although often so bleakly dull when presented at undergraduate level) – heat engines – with contemporary research ideas in quantum gravity and high energy physics. So I get to draw some of the cycles in the p-V plane (graph of pressure vs volume) representing the inner workings of engines of particular designs (just like you might have seen long ago in a physics class yourself) and compute their efficiency for doing mechanical work in exchange for some heat you supply. It is fundamental that you can’t heat_enginedo that with 100% efficiency otherwise you’d violate the second law of thermodynamics – that’s why all engines have to have some exhaust in the form of heat, giving an efficiency represented by a quantity [tex]\eta[/tex] that is less than one, where one is 100% efficient. The diagram on the left illustrates the key pieces all engines must have, no matter what working substance you’re using. The details of the design of the engine are what kind of cycle you taking it through and what the properties (“equation of state”) your working substance has. In the case of a car, for example, the working substance is cleverly mixed up with the source of heat – the air/gasoline mix forms a “working substance” that gets expanded and compressed in various ways (in the green bit of the diagram), but the fact that it also burns releasing heat means it is also the source of the heat that comes into the engine (the flow from the red bit) to be (in part) turned to work, and the remainder flowing out to the blue (exhaust). Very clever.

The cool thing here is that I’m using black holes as the working substance for […] Click to continue reading this post

Discovery Coincidence

chatter_sketch_arenaSome of you are wondering what I’m working on while on retreat. Well, actually there’s a nice coincidence here. I’m working on the graphic book that you may have heard me talk about a bit. “The Project” as I sometimes call it. I’ve been doing things on various aspects of it, such as reworking the description of it for various people to look at, writing new bits, and spending a bit of time pulling together various bits of the prototype story I used to start all of this back in 2010. The prototype bits have all of my experimentation and development of style and technique all over them, and so there are pages that needed a bit of rework (to say the least). So, on Monday, […] Click to continue reading this post

Discovery Clarification

[Update: Over the months following the announcement, doubt was cast over exactly what BICEP2 saw, and now it seems that the signal announced by BICEP2 is consistent with polarisation produced by galactic dust. See here.]

I’m actually in hiding and silence for a week. It is Spring Break and I have locked myself away in a seaside town to do some writing, as I did last year. But I must break my silence for a little while. Why? Well there’s been a really great announcement in physics today and while being very happy that it is getting a lot of press attention – and it should since the result is very important and exciting – I’ve been stunned by how confusingly it has been reported in several news reports. So I thought I’d say a few things that might help.

But first, let me acknowledge that there’s a ton of coverage out there and so I don’t need to point to any press articles. I will just point to the press release of the BICEP2 collaboration (yes, that’s what they’re called) here, and urge you once you’ve read that to follow the link within to the wealth of data (images, text, graphs, diagrams) that they provide. It’s fantastically comprehensive, so knock yourself out. The paper is here.

I keep hearing reports saying things like “Scientists have proved the Big Bang”. No. The Big Bang, while an exciting and important result for modern cosmology, is very old news. (You can tell since there’s even a TV comedy named after it.) This is not really about the Big Bang. This is about Inflation, the mechanism that made the universe expand rapidly from super-tiny scales to more macroscopic scales in fractions of a second. (I’ll say more about the super-tiny below).

I also hear (slightly more nuanced) reports about this being the first confirmation of Inflation. That’s a point we can argue about, but I’d say that’s not true either. We’ve had other strong clues that Inflation is correct. One of the key things that pops out of inflation is that it flattens out the curvature of universe a lot, and the various observations that have been made about the Cosmic Microwave Background over the years (the CMB is that radiation left over from when the universe was very young (about 380,000 years old – remember the universe is just under 14 million years old!)) have shown us that the universes is remarkably flat. Another previous exciting result in modern cosmology. Today’s result isn’t the first evidence.

So what is today’s exciting news about then? The clue to the correct […] Click to continue reading this post

Collecting the Cosmos

i_2014_01_24_CollectCosmos_150x200Don’t forget that on the USC campus on Friday at 4:00pm, we’ll be kicking off the Collecting the Cosmos event! It will be in the Doheny library, and there’ll be a presentation and discussion first, and then a special opening reception for the exhibition. Be sure to get yourself on the waiting list since there’s some chance that you’ll get in even if you have not RSVPed yet. (The image is from the Visions and Voices event site, and includes parts of the artworks – by artists Victor Raphael and Clayton Spada – to be included in the exhibition, so come along and see.) The event description says, in part: […] Click to continue reading this post

Big History is Coming!

big_history_promo_still

You’ll recall that I was in New York a short while ago to film some promotional material for a new TV series. It is called Big History, and it will be on History Channel’s H2 channel (and eventually on various international channels, but I’ve no idea which – similar ones to where you find the other show I’ve mentioned a bit, The Universe, I expect).

Rather than be primarily about astronomical and cosmological things, the show will focus each week on one of a list specific items that have affected our history, and take the long view about that item. How long a view? The longest known possible! So take something like Salt, and examine its role in civilization and culture, bringing in historians, anthropologists, etc… and physical scientists to trace that object back to its roots in the early universe… (the big bang, the cores of stars, etc.) Update: For you Breaking Bad fans, note that it’ll be narrated by Bryan Cranston, by the way.

Here’s one of the promo videos:

[…] Click to continue reading this post

Weinberg on Physics Now

I just spotted (a bit late) that Steven Weinberg (one of the giants of my field) has written a piece in the New York Review ofBooks entitled “Physics: What We Do and Don’t Know”. I recommend it. He talks about astronomy, cosmology, particle physics, and by casting his eye over the arc of their recent (intertwined) histories of ideas, experiments and discoveries, tries to put the Standard Models of particle physics and of cosmology into perspective.

The article is […] Click to continue reading this post

TED Youth Talk – Hidden Structures of the Universe

cvj_TED_YouthYou might recall that last year I gave a talk at TED Youth, in their second year of short TED talks aimed at younger audiences. You’ll recall (see e.g. here and here) I made a special set of slides for it, composed from hundreds of my drawings to make it all in graphic novel style, and somehow trying to do (in 7 minutes!!) what the TED people wanted.

They wanted an explanation of string theory, but when I learned that telescopesI was the only person in the event talking about physics, I kind of insisted that (in a year when we’d discovered the Higgs boson especially!) I talk more broadly about the broader quest to understand what the world is made of, leaving a brief mention of string magnifytheory at the end as one of the possible next steps being worked on. Well, they’ve now edited it all together and made it into one of the lessons on the TED Ed site, and so you can look at it. Show it to friends, young and old, and remember that it is ok if you don’t get everything that is said… it is meant to invite you to find out more on your own. Also, as you see fit, use the pause button, scroll back, etc… to get the most out of the narrative.

I’m reasonably pleased with the outcome, except for one thing. WHY am I rocking […] Click to continue reading this post

Known Unknowns Decreased a Bit

Well, the day is here. The Planck collaboration has announced a huge amount of results for the consumption of the scientific community and the media today. The Planck satellite looks with unprecedented precision at the very earliest radiation (“cosmic microwave background radiation”, CMB) from the universe when it was very young (a wee, cute 380,000 years old) and helps us deduce many things about what the universe was like then, and what it is like now. Here’s one of the representations of the universe using the new sky mapping Planck did (image courtesy ESA/Planck):

There’s a ton of data, and a raft of papers with analysis and conclusions. And there’s a very nice press release. I recommend looking at it. It is here, and the papers are here. The title of the press release is “Planck reveals an almost perfect Universe”, and some of the excitement is in the “almost” part. A number of anomalies that were hinted at by the previous explorer of the CMB, WMAP, seem to have been confirmed by Planck, and so there are some important things to be understood in order to figure out the origin of the anomalies (if they ultimately turn out to be real physics and not data artefacts). [Update: Andrew Jaffe has two nice posts I recommend. One on the science, and the other on the PR. Jester also has a nice post on the science from a particle physicist’s perspective.]

What is the title of my post referring to? Well, the refined measurements have allowed us to update some of the vital statistics of the universe. First, it is a bit older than previous measurements have indicated. The age is now measured as 13.82 billion years. (I’m already updating pages in the draft of my book…) Second, the proportion of ingredients […] Click to continue reading this post

Heaven’s Parameters

Oh… I forgot to get around to letting you know the result of designing the universe required in a previous post. The result is that it is a radiation (“light”) filled universe with positive cosmological constant [tex]\Lambda[/tex](and so space wants to expand due to negative pressure – much like ours seems to be doing). The radiation density wants the thing to collapse. There’s a balance between the two, and it turns out that it is when the two densities (radiation, and vacuum energy) are equal. This is only possible when there is positive curvature for the universe (so, not like ours), as you can see from the Friedman equation if you were that way inclined. So the universe is a 3-sphere, and if you work it out, the radius of this 3-sphere turns out to be [tex]a=\left(\frac{3}{2\Lambda}\right)^{1/2}[/tex]. The temperature of the radiation is then computed using the usual Stefan-Boltzmann relation.

The equality of densities turns out to result from the fact that the effective potential of the equation is at a maximum, and so this universe turns out to be unstable… It is a radiation-filled version of Einstein’s matter-filled static universe, which is also unstable. It is larger than Einstein’s by a factor of [tex]\sqrt{3/2}[/tex].

Einstein was said to have arrived at his static universe on the grounds of what he thought was observationally clear – the universe was unchanging (on large scales). […]
The equality of densities turns out to result from the fact that the effective potential of the equation is at a maximum, and so this universe turns out to be unstable… It is a radiation-filled version of Einstein’s matter-filled static universe, which is also unstable. It is larger than Einstein’s by a factor of [tex]\sqrt{3/2}[/tex].

Einstein was said to have arrived at his static universe on the grounds of what he thought was observationally clear – the universe was unchanging (on large scales). Hubble […] Click to continue reading this post